13 research outputs found

    Contrasting and congruent patterns of genetic structuring in two Microtus vole species using museum specimens

    Get PDF
    The common vole (Microtus arvalis) and the field vole (Microtus agrestis) are morphologically similar species but are ecological distinctive and differ in the details of their evolutionary history as revealed by mitochondrial DNA (mtDNA). The aim of this study is to describe patterns of genetic variability using microsatellite markers in populations of the common and field vole in Poland using museum specimens, to assess the degree of congruence with mtDNA variation and thereby determine the factors that influence current patterns of gene flow. We genotyped 190 individuals of the common vole at 11 loci and 190 individuals of the field vole at 13 loci. Overall differentiation based on F ST was higher for the common vole than in the field vole. We detected a significant isolation by distance pattern for both species. Bayesian analysis in STRUCTURE identified Eastern and Western geographic groups in Poland based on microsatellites for both species. The location of river barriers is likely to be the main factor in these partitions. The eastern-western subdivision with microsatellites does not coincide with the distribution of mtDNA lineages for either species. Unlike previous studies in the common and field vole elsewhere in Europe, we found no evidence of reproductive isolation between the mtDNA lineages of these species at their contact zones in Poland. This study highlights the different roles of evolutionary history and landscape in shaping contemporary genetic structure in voles in Poland

    Widespread Translocation from Autosomes to Sex Chromosomes Preserves Genetic Variability in an Endangered Lark

    Get PDF
    Species that pass repeatedly through narrow population bottlenecks (<100 individuals) are likely to have lost a large proportion of their genetic variation. Having genotyped 92 Raso larks Alauda razae, a Critically Endangered single-island endemic whose world population in the Cape Verdes over the last 100 years has fluctuated between about 15 and 130 pairs, we found variation at 7 of 21 microsatellite loci that successfully amplified, the remaining loci being monomorphic. At 6 of the polymorphic loci variation was sex-linked, despite the fact that these microsatellites were not sex-linked in the other passerine birds where they were developed. Comparative analysis strongly suggests that material from several different autosomes has been recently transferred to the sex chromosomes in larks. Sex-linkage might plausibly allow some level of heterozygosity to be maintained, even in the face of persistently small population sizes

    Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences

    No full text
    Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineage displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved. suggesting a rapid and potentially Simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past. (C) 2004 Elsevier Inc. All rights reserved

    Molecular Cytogenetic Characterization of Multiple Intrachromosomal Rearrangements in Two Representatives of the Genus Turdus (Turdidae, Passeriformes)

    No full text
    Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely

    Sex-specific clines support incipient speciation in a common European mammal

    Full text link
    Hybrid zones provide excellent opportunities to study processes and mechanisms underlying reproductive isolation and speciation. Here we investigated sex-specific clines of molecular markers in hybrid zones of morphologically cryptic yet genetically highly-diverged evolutionary lineages of the European common vole (Microtus arvalis). We analyzed the position and width of four secondary contact zones along three independent transects in the region of the Alps using maternally (mitochondrial DNA) and paternally (Y-chromosome) inherited genetic markers. Given male-biased dispersal in the common vole, a selectively neutral secondary contact would show broader paternal marker clines than maternal ones. In a selective case, for example, involving a form of Haldane’s rule, Y-chromosomal clines would not be expected to be broader than maternal markers because they are transmitted by the heterogametic sex and thus gene flow would be restricted. Consistent with the selective case, paternal clines were significantly narrower or at most equal in width to maternal clines in all contact zones. In addition, analyses using maximum likelihood cline-fitting detected a shift of paternal relative to maternal clines in three of four contact zones. These patterns suggest that processes at the contact zones in the common vole are not selectively neutral, and that partial reproductive isolation is already established between these evolutionary lineages. We conclude that hybrid zone movement, sexual selection and/or genetic incompatibilities are likely associated with an unusual unidirectional manifestation of Haldane’s rule in this common European mammal
    corecore